数学

重複順列

 

重複順列

n個の中からr個選ぶ順列は、nPr です。重複順列は同じものを『重複を許して』並べて良い組み合わせです。

n個の箱にr個の種類のボールを何度でも入れて良いと考えます。

 

 

A, B, Cの文字を重複を許して、2つに並び変える組み合わせ

AA, AB, AC
BA, BB, BC
CA, CB, CC

2つの箱に3つのボールを重複を許して入れていくと考える、積の法則から

3^2  = 3 × 3 = 9パターン

 

 

 

組み合わせ

 

赤、白、緑、青の異なる4色のボールを取り出す組み合わせ

 

  • 赤のボールについて
    ・取り出す
    ・取り出さない

2パターンが生まれる。

 

2^4 = 2 × 2 × 2 × 2 = 16通り

 

0, 1, 2, 3の数字を使って、重複を許して3ケタの数字を作る組み合わせ

千の位に0は使うことが出来ないから、

 

3 × 4 × 4 = 48通り

 

 

赤、白、緑、青の異なる4色のボールを1つ以上取り出す組み合わせ

 

『1つ以上』がポイント、すべてのボールを取り出さないというパターンを除外します。

 

2^4 - 1 = 15パターン

 

 

 

5個のボールをA, B二つの箱に入れる場合の組み合わせ

 

『すべてがAの箱』、『すべてがBの箱』というパターンを除外します。

2^5 - 2 = 30通り

 

 

5個のボールを2つの箱に入れる場合の組み合わせ

 

『箱に区別がない』ので2で割ります。
『赤、青』と『白、緑、黄色』の分け方と、『白、緑、黄色』と『赤、青』の分け方の区別がないからです。

 

(2^5 - 2) ÷ 2 = 15通り

 

 

Amazonおすすめ

iPad 9世代 2021年最新作

iPad 9世代出たから買い替え。安いぞ!🐱 初めてならiPad。Kindleを外で見るならiPad mini。ほとんどの人には通常のiPadをおすすめします><

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

日本語が含まれない投稿は無視されますのでご注意ください。(スパム対策)